
Application Note
CML Microcircuits

COMMUNICATION SEMICONDUCTORS

C-BUS to SPI interfacing

AN/General/CBUS2SPI/1 December 2007

© 2007 CML Microsystems PLC 1 of 6 AN/General/CBUS2SPI/1 December 2007

This document provides techniques for interfacing the CML proprietary C-BUS to an SPI bus. It
explores the easier handling enabled by modern implementations of SPI ports and delves into some
of the issues and trade-offs that arise. The introduction is not meant to serve as a tutorial to SPI and
the material covered is only mentioned where it is relevant to the operation of C-BUS. Readers are
expected to have a good knowledge of SPI and are advised to carefully study the SPI implementation
that they plan to use.

1 Introduction to SPI hardware
The SPI bus specifies four logic signals:

1. SCLK - Serial Clock (output from master)
2. MOSI - Master Output, Slave Input
3. MISO - Master Input, Slave Output
4. SS - Slave Select (active low output from master, input to slave)

Alternative naming conventions are also widely used:

1. SCK - Serial Clock
2. SDI, DI, SI - Serial Data In
3. SDO, DO, SO - Serial Data Out
4. nCS, CS, nSS, STE - Chip Select, Slave Transmit Enable

1 30 4 6 7521 30 4 6 752 MOSI

SCLKSCLK

MOSI

MISOMISO

SPI Master SPI Slave

SS SS

Figure 1. Typical basic SPI connection

A typical connection between two SPI devices is shown in Figure 1. The SPI bus operates with a
single master and one or more slaves. The SS is effectively a chip select on a slave and, if a single
slave is used, it may be possible to wire its SS pin to logic 0. Some slaves, however, require a falling
edge on their SS input to initiate any actions. With multiple slaves, an independent SS signal is
required from the master for each slave. Some processor’s SPI ports provide more than one SS
output when bus mastering but often GPIO pins, under software control, must be committed to this
function. Multiple slave connection is illustrated in Figure 2.

Application Note C-BUS to SPI interfacing

© 2007 CML Microsystems PLC 2 of 6 AN/General/CBUS2SPI/1 December 2007

1 30 4 6 7521 30 4 6 752
MOSI

SCLKSCLK

MOSI

MISOMISO

SPI Master SPI Slave

SS SS

1 30 4 6 752
MOSI

SCLK

MISO

SPI Slave

SS

Slave Select using host
GPIO or de-multiplexer

Figure 2. Connecting multiple slaves to one master

Most SPI devices have tri-state outputs that go high impedance when a slave is not selected. This is a
requirement for bus sharing unless some form of external multiplexing is used. Some SPI devices
permit multiple slaves to be selected and provide an arbitration or addressing system in the data
transfer.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Z

Z

Z

Z

Z

Z

Z

CPOL=0
CPOL=1

MISO
MOSI

MISO
MOSI

SCLK

SS

CPHA=0

CPHA=1

Figure 3. Relative timing for all SPI modes

SPI permits control of the polarity and phase with respect to data transfers. The settings of these
parameters determine the ‘Mode’ of the SPI port and there are typically 4 such mode settings. The
timing of the relative signals is shown in Figure 3 for all modes. The modes are tabulated in Table 1.

Clock Polarity - CPOL Clock Phase - CPHA SPI Mode

0 0 0
0 1 1
1 0 2
1 1 3

Table 1. SPI Modes

Many modern implementations of SPI have discarded the looping register approach and use a
configuration similar to that illustrated in Figure 4. Data transmission become independent from
reception and this has several advantages:

• Transmitting data does not cause garbage to be looped back into the receiver
• The formatting of the data is under host control
• The SPI transaction becomes readily configurable

Application Note C-BUS to SPI interfacing

© 2007 CML Microsystems PLC 3 of 6 AN/General/CBUS2SPI/1 December 2007

SPI OUT

SPI IN

SS0

10 n2

10 n2

10 n2

10 n2

SSn

SCLK

SPI Rx Buffer

SPI Tx Buffer

Microcontroller

Multiple Slave Selects

Figure 4. SPI implementation on a modern microcontroller

Modern implementations also permit extensive control of the signal timing. For example:
• Autonomous control of SS
• Programmable duration from the falling edge of SS to the first clock edge
• Programmable duration between concatenated reads and writes
• Streaming modes that allow continuous transfer for a preset number of bytes
• FIFOs to reduce software load

2 Connecting C-BUS to SPI
C-BUS is very similar to SPI and in most cases, can be connected directly to an SPI master. CML
devices are always connected as slaves. Multiple CML devices can be connected by multiplexing SS
since the output equivalent to MISO, Reply Data on C-BUS, is tri-state when SS is high. The
connection method is illustrated in Figure 5.

1 30 4 6 752

SCLK

MOSI

MISO

SPI Master C-BUS
Peripheral

SS

Command/Data

SCLK

Reply Data

CSN

Slave Select using host
GPIO or de-multiplexer

C-BUS
Peripheral

Command/Data

SCLK

Reply Data

CSN

Figure 5. Typical connection for one or more C-BUS slaves

C-BUS transactions are initiated by a falling edge on CSN but this must not rise again until the full C-
BUS transaction is completed. C-BUS transactions are normally 8, 16 or 24 -bit. Some of the later
devices also have a streaming mode in which CSN must be asserted for the full duration of the data
transfer. Further information on C-BUS transactions can be found in the Application Notes section of
the CML website.

The following sections discuss ways of configuring and handling SPI when interfacing C-BUS. Please
see Table 2 at the end of this document for the various naming conventions used in C-BUS.

Application Note C-BUS to SPI interfacing

© 2007 CML Microsystems PLC 4 of 6 AN/General/CBUS2SPI/1 December 2007

2.1 Basic SPI port connection
The basic SPI port comprises a single 8-bit register with access at either end such that the data can
be looped through the device as illustrated in Figure 1. For this type of implementation:

1. Configure the SPI port as a master.
2. Program the appropriate clock rate
3. The clock phase and polarity should be set so that data is transmitted on the falling edge and

received on the rising edge. Normally SPI mode 3 will work but check the relative timing of SS
low to the change of state on SPI Clock. There must be a delay that meets the requirements
of C-BUS. Alternatively, use a general-purpose output pin for C-BUS Chip Select and control
it in software.

4. The MOSI pin should be connected to the C-BUS Command/Data input.
5. MISO should be connected to the C-BUS Reply Data output.
6. The SPI Clock should be connected to the C-BUS Serial Clock input.
7. SS (Slave Select) should be connected to C-BUS Chip Select. Essentially, this can be

considered as a device chip select that must be active low for the full duration of any C-BUS
transaction.

2.2 Issues with SPI register looping
The Command/Data and Reply Data lines of C-BUS are not looped. If a read of C-BUS is required,
then a command is sent into Command/Data and the response is subsequently read back from Reply
Data. Reply Data is tri-state until after the Command/Data byte has been received by the C-BUS
peripheral. Following this, after the required inter-byte duration, Reply Data becomes active and
Command/Data is expected to remain at the current level. On the SPI master both MOSI and MISO
are active due to the looping effect of the register. This can cause problems when C-BUS transactions
are used that returns bytes (such as a read of the Status Register). Here the Command/Data byte
(clocked out on MOSI) will cause the master’s SPI register to fill with ‘random’ data from MISO. The
following read from C-BUS Reply Data on MISO, will cause the ‘random’ data in the SPI register to
loop onto C-BUS Command Data. When the C-BUS CSN is taken high to terminate the transaction,
the ‘random’ data clocked into Command/Data may cause unexpected operation in the C-BUS
peripheral. To avoid any problems, the C-BUS 'Reply Data' should be pulled high or the SPI contents
cleared to 0xFF between data transfers. This scenario is illustrated in Figure 6.

MOSIMISO
SPI Master C-BUS Peripheral

1 01 1 0 101 Command/Data

Reply DataTri-State

6a. A C-BUS command has been loaded into
the SPI register and a transmit task is
activated. As the C-BUS command is
transmitted, the level at MISO is read in as
an arbitrary value.

1 10 1 1 000 1 1 1 0 1 0 0 1

0 0 0 0 1 0 0 0Tri-State

6b. The C-BUS command has been clocked
into the C-BUS peripheral and the reply is
loaded ready to send. The SPI register now
contains a ‘random’ byte.

0 00 1 0 000 0 1 0 1 1 0 1 0

Active

6c. The Reply Data has been clocked back
into the SPI register via MISO and the
‘random’ byte has been clocked into C-BUS
Command Data. This may cause unexpected
operation in the C-BUS peripheral.

1 11 1 1 111 Command/Data

Reply DataTri-State

VDD
100k

6d. Using a 100k pull-up on MISO causes
0xFF to be looped into the SPI register
instead of random data.
Alternatively, the SPI register could be
loaded with 0xFF prior to all SPI receive
tasks.

Application Note C-BUS to SPI interfacing

© 2007 CML Microsystems PLC 5 of 6 AN/General/CBUS2SPI/1 December 2007

x xx x x xxx 1 1 1 1 1 1 1 1

Tri-State

VDD
100k

6e. 0xFF is clocked into Command/Data
instead of ‘random’ data. This is normally
safe for all C-BUS devices.

Figure 6. Avoiding problems with data looping through the SPI register

2.3 Autonomous control of SS
It is conventional on most SPI implementations to find that SS can be handled without software
intervention - autonomous control of SS. This feature may be a default mode or it may have to be
selected. Autonomous control of SS will require that a default pin is used for the SS signal or a limited
number of options will be available. If the C-BUS timing prevents SS autonomous control, then it must
be disabled and a GPIO pin used instead. In this case:

1. The GPIO pin must be set to low
2. SPI transfer initiated
3. On completion signal from SPI the GPIO pin must be set high

It is also necessary to ensure that the GPIO pin is not held low during start-up or initialisation following
application of power.

2.4 Using multiple byte SPI transactions
Many versions of SPI permit a preset number of bytes to be transferred in any one transaction (the
period during which SS is asserted). Caution must be used with this mode to ensure that the timing
requirements of C-BUS are met.

2.5 Considerations for C-BUS timing
C-BUS timing parameters should be obtained from the C-BUS Timings section of the RELEVANT
device’s data sheet.

7

7 6Z

CPOL=0

SS
CPHA=1
CPHA=0

Z 7 6

tCSE

It is possible to use SPI Mode 0 if the duration from SS low to
SCLK first edge (high in this case) is programmable. This duration
must be programmed to be equal to or longer than tCSE , given in
the C-BUS timing parameters. This is only of benefit where it is
required that SCLK be low between SPI transactions, for example
when another slave on the bus requires this.

Figure 7. Using SPI Mode 0

The SPI SCLK normally has an equal duty cycle which is ideal for C-BUS. However, if approaching
the maximum C-BUS clock cycle time, then confirm that the duration of the shortest clock edge is
equal or longer than tCSE, tCH, tCL, tCSH. Also, confirm that the clock period is equal to or longer than tNXT
if multi-byte SPI transactions are used.
C-BUS transactions cannot be concatenated. The delay between successive C-BUS transactions is
given by tCSOFF and it is usually of longer duration than the clock cycle time tCK. It is likely that a timer
or some other mechanism will be required to prevent this timing parameter being violated.
If the highest burst rate (highest clock speed) is not required from C-BUS, then make the SPI SCLK
period;

1. longer than tNXT if the time between transactions is controlled or
2. longer than tCSOFF for the simplest timing control.

Application Note C-BUS to SPI interfacing

CML does not assume any responsibility for the use of any algorithms, methods or circuitry described. No IPR or circuit patent
licenses are implied. CML reserves the right at any time without notice to change the said algorithms, methods and circuitry
and this product specification. CML has a policy of testing every product shipped using calibrated test equipment to ensure

compliance with this product specification. Specific testing of all circuit parameters is not necessarily performed.

3 C-BUS signal pin names
C-BUS has always comprised 5 signal lines but these have been given many alternative names. The
following table gives these alternatives, but groups them as they are found on particular C-BUS
devices. The entries are listed historically, with the latest naming convention at the beginning of the
table. The table is headed by the names used in this document.

SClk Command/Data Reply Data CSN IRQN
Serial Clk CMD Data Reply Data CSN IRQ
SCLK CMD Data Reply Data CSN IRQ
CLK CData RData CSN IRQN
SCLK CData RData CSN IRQN
SCK SDI SDO CSN -
Serial_Clock CMD_Data Reply_Data CSN IRQN
Serial Clock CMD Data RPLY Data CS IRQ
SCLK CMD RPLY CSN IRQN
Serial Clock Command Data Reply Data CS IRQ
SERCK COMDATA REPDATA CSN IRQN

Table 2. Alternative names for C-BUS signal pins.

This list is not exhaustive and other variations of these names will occasionally be found in older CML
product.

	1 Introduction to SPI hardware
	2 Connecting C-BUS to SPI
	2.1 Basic SPI port connection
	2.2 Issues with SPI register looping
	2.3 Autonomous control of SS
	2.4 Using multiple byte SPI transactions
	2.5 Considerations for C-BUS timing

	3 C-BUS signal pin names

